Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(11): 18628-18637, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221660

RESUMO

A unique design of our ultracompact microcavity wavelength conversion device exploits the simple principle that the wavelength conversion efficiency is proportional to the square of the electric field amplitude of enhanced pump light in the microcavity, and expands the range of suitable device materials to include crystals that do not exhibit birefringence or ferroelectricity. Here, as a first step toward practical applications of all-solid-state ultracompact deep-ultraviolet coherent light sources, we adopted a low-birefringence paraelectric SrB4O7 crystal with great potential for wavelength conversion and high transparency down to 130 nm as our device material, and demonstrated 234 nm deep-ultraviolet coherent light generation, whose wavelength band is expected to be used for on-demand disinfection tools that can irradiate the human body.

2.
Opt Express ; 30(16): 28853-28864, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299073

RESUMO

III-nitride-based two-dimensional photonic crystal (2D-PhC) cavities with high-quality factors (Q-factors) have a large potential application, however realized Q-factors in the visible wavelength regime have been relatively moderate. In this study, we demonstrate the design and fabrication of 2D-PhC cavities to achieve high Q-factors, especially in the visible range. From the comparison of numerical calculations and the experimental results, we discuss the dominant optical losses that limit the Q-factor of H3-type cavities formed in an Eu,O-codoped GaN film. Based on these results we designed 2D-PhC cavities which can effectively suppress these dominant losses. We fabricated 2D-heterostructures and show a high Q-factor of 10500 at a resonant wavelength of ∼660 nm, which is considerably larger than any existing GaN-based nano/micro-resonators in the visible region. This study provides design guidelines for the realization of high Q-factors in photonic crystal nanocavities based on III-nitride semiconductors.

3.
Opt Express ; 30(3): 3488-3496, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209605

RESUMO

In this study, we shed light on the properties of a photonic ring resonator made up of a closed array of circular dielectric nanorods arranged periodically in a background material. This type of resonator can reach high-quality factors (Q-factor) for specific transverse-magnetic (TM)-like modes, while maintaining a small footprint. We validate this by full 3D finite difference time domain simulations. The properties of the mode most interesting for applications are determined for various parameters of the resonator for the material parameters of GaN. This study provides design guidelines for the realization of this type of photonic nano-resonator and proposes and analyses two practical implementations.

4.
Opt Lett ; 46(17): 4260-4263, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469989

RESUMO

We report an analysis of one-dimensional rod-based photonic crystal nanocavities. These cavities offer opportunities for dielectric materials which lack a matching low-refractive index substrate or are limited in under-etching possibilities to create slab-based PhC cavities. They offer high theoretical Q-values exceeding 106 for transverse magnetic polarized modes with modal volumes below 2.5(λ/n)3. For practical implementations, we propose embedding these structures in a low-refractive index polymer. An analysis of intentionally introduced variations in a rod diameter reveals which design directions should be followed in order to create cavities that are most robust for fabrication-induced variations.

5.
ACS Omega ; 5(34): 21506-21512, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905445

RESUMO

Multiple exciton generation (MEG) takes place in competition to other hot carrier cooling processes. While the determination of carrier cooling rates is well established, direct information on MEG dynamics has been lacking. Here, we present a methodology to obtain the MEG rate directly in the initial ultrafast transient absorption dynamics. This method is most effective to systems with slow carrier cooling rates. Perovskite quantum dots exhibit this property and are used to illustrate this approach. They show a delayed carrier concentration buildup following an excitation pulse above the MEG threshold energy, which is accompanied by a faster carrier relaxation, providing a direct evidence of the MEG process. Numerical modeling within a simple framework of two competing cooling mechanisms allows us to extract the MEG rate and carrier energy cooling rates for this material. The presented methodology could provide new insights in carrier generation physics and valuable information for MEG investigations.

6.
Nat Commun ; 9(1): 4199, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305623

RESUMO

The all-inorganic perovskite nanocrystals are currently in the research spotlight owing to their physical stability and superior optical properties-these features make them interesting for optoelectronic and photovoltaic applications. Here, we report on the observation of highly efficient carrier multiplication in colloidal CsPbI3 nanocrystals prepared by a hot-injection method. The carrier multiplication process counteracts thermalization of hot carriers and as such provides the potential to increase the conversion efficiency of solar cells. We demonstrate that carrier multiplication commences at the threshold excitation energy near the energy conservation limit of twice the band gap, and has step-like characteristics with an extremely high quantum yield of up to 98%. Using ultrahigh temporal resolution, we show that carrier multiplication induces a longer build-up of the free carrier concentration, thus providing important insights into the physical mechanism responsible for this phenomenon. The evidence is obtained using three independent experimental approaches, and is conclusive.

7.
ACS Appl Mater Interfaces ; 10(6): 5984-5991, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29355301

RESUMO

All-inorganic cesium lead halide perovskite nanocrystals are extensively studied because of their outstanding optoelectronic properties. Being of a cubic shape and typically featuring a narrow size distribution, CsPbX3 (X = Cl, Br, and I) nanocrystals are the ideal starting material for the development of homogeneous thin films as required for photovoltaic and optoelectronic applications. Recent experiments reveal spontaneous merging of drop-casted CsPbBr3 nanocrystals, which is promoted by humidity and mild-temperature treatments and arrested by electron beam irradiation. Here, we make use of atom-resolved annular dark-field imaging microscopy and valence electron energy loss spectroscopy in a state-of-the-art low-voltage monochromatic scanning transmission electron microscope to investigate the aggregation between individual nanocrystals at the atomic level. We show that the merging process preserves the elemental composition and electronic structure of CsPbBr3 and takes place between nanocrystals of different sizes and orientations. In particular, we reveal seamless stitching for aligned nanocrystals, similar to that reported in the past for graphene flakes. Because the crystallographic alignment occurs naturally in drop-casted layers of CsPbX3 nanocrystals, our findings constitute the essential first step toward the development of large-area nanosheets with band gap energies predesigned by the nanocrystal choice-the gateway to large-scale photovoltaic applications of inorganic perovskites.

8.
J Phys Chem C Nanomater Interfaces ; 122(7): 4116, 2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-31329758

RESUMO

[This corrects the article DOI: 10.1021/acs.jpcc.7b05752.].

9.
Sci Rep ; 7(1): 16773, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196749

RESUMO

The internal quantum efficiency (IQE) of an electrically-driven GaN:Eu based device for red light emission is analyzed in the framework of a current injection efficiency model (CIE). The excitation path of the Eu+3 ion is decomposed in a multiple level system, which includes the carrier transport phenomena across the GaN/GaN:Eu/GaN active region of the device, and the interactions among traps, Eu+3 ions and the GaN host. The identification and analysis of the limiting factors of the IQE are accomplished through the CIE model. The CIE model provides a guidance for high IQE in the electrically-driven GaN:Eu based red light emitters.

10.
Sci Rep ; 7(1): 14648, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116197

RESUMO

A physically intuitive current injection efficiency model for a GaN:Eu quantum well (QW) has been developed to clarify the necessary means to achieve device quantum efficiency higher than the state-of-the-art GaN:Eu system for red light emission. The identification and analysis of limiting factors for high internal quantum efficiencies (IQE) are accomplished through the current injection efficiency model. In addition, the issue of the significantly lower IQE in the electrically-driven GaN:Eu devices in comparison to the optically-pumped GaN:Eu devices is clarified in the framework of this injection efficiency model. The improved understanding of the quantum efficiency issue through current injection efficiency model provides a pathway to address the limiting factors in electrically-driven devices. Based on our developed injection efficiency model, several experimental approaches have been suggested to address the limitations in achieving high IQE GaN:Eu QW based devices in red spectral regime.

11.
J Phys Chem C Nanomater Interfaces ; 121(35): 19490-19496, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28919935

RESUMO

Nanocrystals of all-inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, I) feature high absorption and efficient narrow-band emission which renders them promising for future generation of photovoltaic and optoelectronic devices. Colloidal ensembles of these nanocrystals can be conveniently prepared by chemical synthesis. However, in the case of CsPbBr3, its synthesis can also yield nanocrystals of Cs4PbBr6 and the properties of the two are easily confused. Here, we investigate in detail the optical characteristics of simultaneously synthesized green-emitting CsPbBr3 and insulating Cs4PbBr6 nanocrystals. We demonstrate that, in this case, the two materials inevitably hybridize, forming nanoparticles with a spherical shape. The actual amount of these Cs4PbBr6 nanocrystals and nanohybrids increases for synthesis at lower temperatures, i.e., the condition typically used for the development of perovskite CsPbBr3 nanocrystals with smaller sizes. We use state-of-the-art electron energy loss spectroscopy to characterize nanoparticles at the single object level. This method allows distinguishing between optical characteristics of a pure Cs4PbBr6 and CsPbBr3 nanocrystal and their nanohybrid. In this way, we resolve some of the recent misconceptions concerning possible visible absorption and emission of Cs4PbBr6. Our method provides detailed structural characterization, and combined with modeling, we conclusively identify the nanospheres as CsPbBr3/Cs4PbBr6 hybrids. We show that the two phases are independent of each other's presence and merge symbiotically. Herein, the optical characteristics of the parent materials are preserved, allowing for an increased absorption in the UV due to Cs4PbBr6, accompanied by the distinctive efficient green emission resulting from CsPbBr3.

12.
J Phys Condens Matter ; 29(2): 025702, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27841984

RESUMO

Despite the recent progress in red light-emitting diodes (LED) made of gallium nitride doped with europium (GaN:Eu) having sharp emission lines due to the 5D0 → 7F2 transition of Eu3+, unexpected subsidiary Eu emission centers radiate several satellite lines. We investigated these subsidiary emission centers by analyzing the harmonic contents through electronic means, and observed the originally forbidden even harmonics in a specific frequency region of 23-45 MHz. The even-harmonic generation was formulized with a binary response caused by the electronic coupling of emission centers in valence states, i.e. dimerization. The coupling was consistent with the results of the optical analyses of former studies. The binary response was experimentally quantified by using a parameter such as the phase difference between the responses of coupled centers, and a significant phase difference of 63° was observed at 36 MHz. The injection charges were cooperatively captured by the coupled emission centers and were branched into the constituent centers for recombination, resulting in undesired satellite emission lines.

13.
Nano Lett ; 16(11): 7198-7202, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27733042

RESUMO

We investigate the variation of the bandgap energy of single quantum dots of CsPbBr3 inorganic halide perovskite as a function of size and shape and upon embedding within an ensemble. For that purpose, we make use of valence-loss electron spectroscopy with Z-contrast annular dark-field (ADF) imaging in a state-of-the-art low-voltage monochromatic scanning transmission electron microscope. In the experiment, energy absorption is directly mapped onto individual quantum dots, whose dimensions and location are simultaneously measured to the highest precision. In that way, we establish an intimate relation between quantum dot size and even shape and its bandgap energy on a single object level. We explicitly follow the bandgap increase in smaller quantum dots due to quantum confinement and demonstrate that it is predominantly governed by the smallest of the three edges of the cuboidal perovskite dot. We also show the presence of an effective coupling between proximal dots in an ensemble, leading to band structure modification. These unique insights are directly relevant to the development of custom-designed quantum structures and solids which will be realized by purposeful assemblage of individually characterized and selected quantum dots, serving as building blocks.

14.
Opt Express ; 21(25): 30633-41, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514639

RESUMO

Eu ions in situ doped in GaN with V/III ratios varying from 3200 to 9600 have been investigated using resonant site-selective photoluminescence (PL), power dependent cathodoluminescence (CL), and a unique electron beam power dependent dual excitation experiment combining the techniques of PL and CL. The results of these experiments reveal the role of defects in the electronic excitation of Eu ions and the link between the GaN host and Eu ion dopants. The relative number of beneficial defects present in each sample for a majority Eu site (Eu1) and a specific secondary site (Eu2) are revealed. Also, a room temperature activated non-radiative recombination pathway linked to a specific, sample dependent Eu2 excitation pathway is identified. Unlike conventional GaN LEDs, Eu:GaN device performance does not rely completely on crystalline quality, but on the presence of specific excitation enhancing defects and the absence of non-radiative de-excitation channels.

15.
Chemistry ; 18(36): 11371-8, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22865673

RESUMO

[Pt(tpy)Cl]Cl (tpy: terpyridine) was successfully anchored to a series of mesoporous-silica materials that were modified with (3-aminopropyl)triethoxysilane with the aim of developing new inorganic-organic hybrid photocatalysts. Herein, the relationship between the luminescence characteristics and photocatalytic activities of these materials is examined as a function of Pt loading to define the spatial distribution of the Pt complex in the mesoporous channel. At low Pt loading, the Pt complex is located as an isolated species and exhibits strong photoluminescence emission at room temperature owing to metal-to-ligand charge-transfer ((3)MLCT) transitions (at about 530 nm). Energy- and/or electron-transfer from (3)MLCT to O(2) generate potentially active oxygen species, which are capable of promoting the selective photooxidation of styrene derivatives. On the other hand, short Pt···Pt interactions are prominent at high loading and the metal-metal-to-ligand charge-transfer ((3)MMLCT) transition is at about 620 nm. Such Pt complexes, which are situated close to each other, efficiently catalyze H(2)-evolution reactions in aqueous media in the presence of a sacrificial electron donor (EDTA) under visible-light irradiation. This study also investigates the effect of nanoconfinement on anchored guest complexes by considering the differences between the pore dimensions and structures of mesoporous-silica materials.


Assuntos
Luminescência , Compostos Organoplatínicos/química , Dióxido de Silício/química , Catálise , Medições Luminescentes , Estrutura Molecular , Compostos Organoplatínicos/síntese química , Processos Fotoquímicos , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...